We consider a generalization of the diffusion equation on graphs. This generalized diffusion equation gives rise to both normal and superdiffusive processes on infinite one-dimensional graphs. The generalization is based on the $k$-path Laplacian operators $L_{k}$, which account for the hop of a diffusive particle to non-nearest neighbours in a graph. We first prove that the $k$-path Laplacian operators are self-adjoint. Then, we study the transformed $k$-path Laplacian operators using Laplace, factorial and Mellin transforms. We prove that the generalized diffusion equation using the Laplace- and factorial-transformed operators always produce normal diffusive processes independently of the parameters of the transforms. More importantly, the generalized diffusion equation using the Mellin-transformed $k$-path Laplacians $sum_{k=1}^{infty}k^{-s}L_{k}$ produces superdiffusive processes when $1<s<3$.