In this paper, we give a classification of all compact Hermitian manifolds with flat Bismut connection. We show that the torsion tensor of such a manifold must be parallel, thus the universal cover of such a manifold is a Lie group equipped with a bi-invariant metric and a compatible left invariant complex structure. In particular, isosceles Hopf surfaces are the only Bismut flat compact non-Kahler surfaces, while central Calabi-Eckmann threefolds are the only simply-connected compact Bismut flat threefolds.