Manipulating localized matter waves in multi-component Bose-Einstein condensates


الملخص بالإنكليزية

We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameter and external trap potential through similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schr{o}dinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures, namely rogue waves, dark-and bright soliton-rogue wave, and rogue wave-breather-like wave for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Further we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single, two and three composite rogue waves for three component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials.

تحميل البحث