Multiple Hot-Carrier Collection in Photo-Excited Graphene Moire Superlattices


الملخص بالإنكليزية

In conventional light harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve the efficiency and possibly overcome this limit. Here, we report the observation of multiple hot carrier collection in graphene-boron-nitride Moire superlattice structures. A record-high zero-bias photoresponsivity of 0.3 ampere per watt, equivalently, an external quantum efficiency exceeding 50 percent, is achieved utilizing graphene photo-Nernst effect, which demonstrates a collection of at least 5 carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moire minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures.

تحميل البحث