We present the results of an optical photometry and high-resolution spectroscopy campaign for a modest sample of X-ray selected stars in the Chamaeleon and Rho Ophiuchus star forming regions. With R~50000 optical spectra, we establish kinematic membership of the parent association and confirm stellar youth for each star in our sample. With the acquisition of new standardized BVIc photometry, in concert with near-infrared data from the literature, we derive age and mass from stellar positions in model-dependent Hertzsprung-Russell diagrams. We compare isochronal ages derived using colour-dependent extinction values finding that, within error bars, ages are the same irrespective of whether E(B-V), E(V-Ic), E(J-H) or E(H-K) is used to establish extinction, although model ages tend to be marginally younger for redder Ecolour values. For Cham I and Eta Cham members we derive ages of ~< 5-6 Myr, whereas our three Eta Cha candidates are more consistent with a ~> 25 Myr post-T Tauri star population. In Rho Ophiuchus, most stars in our sample have isochronal ages <10 Myr. Five objects show evidence of strong infrared excess (Av>5) in the 2MASS colour colour diagram, however in terms of Halpha emission, all stars except RXJ1625.6-2613 are consistent with being weak-lined T-Tauri stars. Spectral energy distributions (SEDs) over the range ~ 4000A < wavelength < 1000 microns, show that only one Chamaeleon star (RXJ1112.7-7637) and three Rho Ophiuchus stars (ROXR1 13, RXJ1625.6-2613 & RXJ1627.1-2419) reveal substantial departures from a bare photosphere.