Geometric formulation and multi-dark soliton solution to the defocusinig complex short pulse equation


الملخص بالإنكليزية

In the present paper, we study the defocusing complex short pulse (CSP) equations both geometrically and algebraically. From the geometric point of view, we establish a link of the complex coupled dispersionless (CCD) system with the motion of space curves in Minkowski space $mathbf{R}^{2,1}$, then with the defocusing CSP equation via a hodograph (reciprocal) transformation, the Lax pair is constructed naturally for the defocusing CSP equation. We also show that the CCD system of both the focusing and defocusing types can be derived from the fundamental forms of surfaces such that their curve flows are formulated. In the second part of the paper, we derive the the defocusing CSP equation from the single-component extended KP hierarchy by the reduction method. As a by-product, the $N$-dark soliton solution for the defocusing CSP equation in the form of determinants for these equations is provided.

تحميل البحث