Short-range photoassociation from the inner wall of the lowest triplet potential of $^{85}$Rb$_2$


الملخص بالإنكليزية

Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors from the highest-energy bound state can almost precisely reproduce Franck-Condon factors from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from Franck-Condon factors that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.

تحميل البحث