Vortex matter freezing in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ samples with a very dense distribution of columnar defects


الملخص بالإنكليزية

We show that the dynamical freezing of vortex structures nucleated at diluted densities in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ samples with a dense distribution of columnar defects, $B sim 10^{-2} B_{Phi}$ with $B_{Phi}=5$,kG, results in configurations with liquid-like correlations. We propose a freezing model considering a relaxation dynamics dominated by double-kink excitations driven by the local stresses obtained directly from experimental images. With this model we estimate the relaxation barrier and the freezing temperature. We argue that the low-field frozen vortex structures nucleated in a dense distribution of columnar defects thus correspond to an out-of-equilibrium non-entangled liquid with strongly reduced mobility rather than to a snapshot of a metastable state with divergent activation barriers as for instance expected for the Bose-glass phase at equilibrium.

تحميل البحث