Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of H$beta$ Line


الملخص بالإنكليزية

In the sixth of the series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of H$beta$ emission lines for nine objects observed in the campaign during 2012$-$2013. In order to correct the line-broadening caused by seeing and instruments before the analysis of velocity-resolved RM, we adopt Richardson-Lucy deconvolution to reconstruct their H$beta$ profiles. The validity and effectiveness of the deconvolution are checked out by Monte Carlo simulation. Five among the nine objects show clear dependence of time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with the case of virialized motions. The lags of the rest four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diversity of the kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

تحميل البحث