Optimizing parameter constraints: a new tool for Fisher matrix forecasts


الملخص بالإنكليزية

In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process of guesswork is then needed to determine the most efficient way to improve one parameters constraints. In this short article, we highlight an extremely simple analytical expression that replaces the guesswork and that facilitates a deeper understanding of optimization with interdependent parameters.

تحميل البحث