Exotic t-structures for two-block Springer fibers


الملخص بالإنكليزية

We study the exotic t-structure on the derived category of coherent sheaves on two-block Springer fibre (i.e. for a nilpotent matrix of type (m+n,n) in type A). The exotic t-structure has been defined by Bezrukavnikov and Mirkovic for Springer theoretic varieties in order to study representations of Lie algebras in positive characteristic. Using work of Cautis and Kamnitzer, we construct functors indexed by affine tangles, between categories of coherent sheaves on different two-block Springer fibres (i.e. for different values of n). After checking some exactness properties of these functors, we describe the irreducible objects in the heart of the exotic t-structure, and enumerate them by crossingless (m,m+2n) matchings. We compute the Exts between the irreducible objects, and show that the resulting algebras are an annular variant of Khovanovs arc algebras. In subsequent work we will make a link with annular Khovanov homology, and use these results to give a positive characteristic analogue of some categorification results using two-block parabolic category O (by Bernstein-Frenkel-Khovanov, Brundan, Stroppel, et al).

تحميل البحث