What is a particle-conserving Topological Superfluid?


الملخص بالإنكليزية

We establish a criterion for characterizing superfluidity in interacting, particle-number conserving systems of fermions as topologically trivial or non-trivial. Because our criterion is based on the concept of many-body fermionic parity switches, it is directly associated to the observation of the fractional Josephson effect and indicates the emergence of zero-energy modes that anticommute with fermionic parity. We tested these ideas on the Richardson-Gaudin-Kitaev chain, a particle-number conserving system that is solvable by way of the algebraic Bethe ansatz, and reduces to a long-range Kitaev chain in the mean-field approximation. Guided by its closed-form solution, we introduce a procedure for constructing many-body Majorana zero-energy modes of gapped topological superfluids in terms of coherent superpositions of states with different number of fermions. We discuss their significance and the physical conditions required to enable quantum control in the light of superselection rules.

تحميل البحث