Variable Hardy Spaces Associated with Operators Satisfying Davies-Gaffney Estimates


الملخص بالإنكليزية

Let $L$ be a one-to-one operator of type $omega$ in $L^2(mathbb{R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. Let $p(cdot): mathbb{R}^nto(0,,1]$ be a variable exponent function satisfying the globally log-H{o}lder continuous condition. In this article, the authors introduce the variable Hardy space $H^{p(cdot)}_L(mathbb{R}^n)$ associated with $L$. By means of variable tent spaces, the authors establish the molecular characterization of $H^{p(cdot)}_L(mathbb{R}^n)$. Then the authors show that the dual space of $H^{p(cdot)}_L(mathbb{R}^n)$ is the BMO-type space ${rm BMO}_{p(cdot),,L^ast}(mathbb{R}^n)$, where $L^ast$ denotes the adjoint operator of $L$. In particular, when $L$ is the second order divergence form elliptic operator with complex bounded measurable coefficients, the authors obtain the non-tangential maximal function characterization of $H^{p(cdot)}_L(mathbb{R}^n)$ and show that the fractional integral $L^{-alpha}$ for $alphain(0,,frac12]$ is bounded from $H_L^{p(cdot)}(mathbb{R}^n)$ to $H_L^{q(cdot)}(mathbb{R}^n)$ with $frac1{p(cdot)}-frac1{q(cdot)}=frac{2alpha}{n}$ and the Riesz transform $ abla L^{-1/2}$ is bounded from $H^{p(cdot)}_L(mathbb{R}^n)$ to the variable Hardy space $H^{p(cdot)}(mathbb{R}^n)$.

تحميل البحث