Three dimensional topological Dirac semi-metals represent a novel state of quantum matter with exotic electronic properties, in which a pair of Dirac points with the linear dispersion along all momentum directions exist in the bulk. Herein, by using the first principles calculations, we discover a new metastable allotrope of Ge and Sn in the staggered layered dumbbell structure, named as germancite and stancite, to be Dirac semi-metals with a pair of Dirac points on its rotation axis. On the surface parallel to the rotation axis, a pair of topologically non-trivial Fermi arcs are observed and a Lifshitz transition is found by tuning the Fermi level. Furthermore, the quantum thin film of germancite is found to be an intrinsic quantum spin Hall insulator. These discoveries suggest novel physical properties and future applications of the new metastable allotrope of Ge and Sn.