Quantum Decoherence and Thermalization at Finite Temperature within the Canonical Thermal State Ensemble


الملخص بالإنكليزية

We study measures of decoherence and thermalization of a quantum system $S$ in the presence of a quantum environment (bath) $E$. The entirety $S$$+$$E$ is prepared in a canonical thermal state at a finite temperature, that is the entirety is in a steady state. Both our numerical results and theoretical predictions show that measures of the decoherence and the thermalization of $S$ are generally finite, even in the thermodynamic limit, when the entirety $S$$+$$E$ is at finite temperature. Notably, applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider $S$ uncoupled from $E$, but entangled with $E$, to predict decoherence and thermalization measures of $S$. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of $S$ and of $E$. Large-scale numerical results for both coupled and uncoupled entireties with up to 40 quantum spins support these findings.

تحميل البحث