Spin-glass like dynamics of ferromagnetic clusters in La$_{0.75}$Ba$_{0.25}$CoO$_3$


الملخص بالإنكليزية

We report the magnetization study of the compound La$_{0.75}$Ba$_{0.25}$CoO$_3$ where Ba$^{2+}$ doping is just above the critical limit for percolation of ferromagnetic clusters. The field cooled (FC) and zero field cooled (ZFC) magnetization exhibit a thermomagnetic irreversibility and the ac susceptibility show a frequency dependent peak at the ferromagnetic ordering temperature (T$_C$$approx$203~K) of the clusters. These features indicate about the presence of a non-equilibrium state below T$_C$. In the non-equilibrium state, the dynamic scaling of the imaginary part of ac susceptibility and the static scaling of the nonlinear susceptibility clearly establish a spin-glass like cooperative freezing of ferromagnetic clusters at 200.9(2)~K. The existence of spin-glass like freezing of ferromagnetic clusters is further substantiated by the ZFC aging and memory experiments. We also observe certain dynamical features which are not present in a typical spin-glass, such as, initial magnetization after ZFC aging first increases and then decreases with the wait time and an imperfect recovery of relaxation in negative temperature cycling experiments. This imperfect recovery transforms to perfect recovery on concurrent field cycling. Our analysis suggests that these additional dynamical features have their origin in inter-cluster exchange interaction and cluster size distribution. The inter-cluster exchange interaction above the magnetic percolation gives a superferromagnetic state in some granular thin films but our results show the absence of typical superferromagnetic like state in La$_{0.75}$Ba$_{0.25}$CoO$_3$.

تحميل البحث