Groups of unstable Adams operations on p-local compact groups


الملخص بالإنكليزية

A $p$-local compact group is an algebraic object modelled on the homotopy theory associated with $p$-completed classifying spaces of compact Lie groups and p-compact groups. In particular $p$-local compact groups give a unified framework in which one may study $p$-completed classifying spaces from an algebraic and homotopy theoretic point of view. Like connected compact Lie groups and p-compact groups, $p$-local compact groups admit unstable Adams operations - self equivalences that are characterised by their cohomological effect. Unstable Adams operations on $p$-local compact groups were constructed in a previous paper by F. Junod and the authors. In the current paper we study groups of unstable operations from a geometric and algebraic point of view. We give a precise description of the relationship between algebraic and geometric operations, and show that under some conditions unstable Adams operations are determined by their degree. We also examine a particularly well behaved subgroup of operations.

تحميل البحث