We show that linear scalar waves are bounded and continuous up to the Cauchy horizon of Reissner-Nordstrom-de Sitter and Kerr-de Sitter spacetimes, and in fact decay exponentially fast to a constant along the Cauchy horizon. We obtain our results by modifying the spacetime beyond the Cauchy horizon in a suitable manner, which puts the wave equation into a framework in which a number of standard as well as more recent microlocal regularity and scattering theory results apply. In particular, the conormal regularity of waves at the Cauchy horizon - which yields the boundedness statement - is a consequence of radial point estimates, which are microlocal manifestations of the blue-shift and red-shift effects.