The dynamics of relativistic (scalar and vector) bosons through nonminimal vector square (well and barrier) potentials is studied in the Duffin-Kemmer-Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrodinger equations for a component of the DKP spinor. An oscillatory transmission coefficient is found and there is total reflection. Additionally, the energy spectrum of bound states is obtained and reveals the Schiff-Snyder-Weinberg effect, for specific conditions the potential lodges bound states of particles and antiparticles.