Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head


الملخص بالإنكليزية

Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins, and nanoscale magnetic resonance imaging. Here, we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from the pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 Bohr magnetons per root Hz, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the poles strong magnetic gradient of up to 28 million Tesla per meter and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with about 10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation, and mesoscopic physics.

تحميل البحث