Canonical single field slow-roll inflation with a non-monotonic tensor-to-scalar ratio


الملخص بالإنكليزية

We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primeprime }(phi)$, thereby extracting general conditions on the tensor-to-scalar ratio $r$ and the running $n_{sk}$ at $phi_{H}$ where the perturbations are produced, some $50$ $-$ $60$ $e$-folds before the end of inflation. We find quite generally that for models where $epsilon(phi)$ develops a maximum, a relatively large $r$ is most likely accompanied by a positive running while a negligible tensor-to-scalar ratio implies negative running. The definitive answer, however, is given in terms of the slow-roll parameter $xi_2(phi)$. To accommodate a large tensor-to-scalar ratio that meets the limiting values allowed by the Planck data, we study a non-monotonic $epsilon(phi)$ decreasing during most part of inflation. Since at $phi_{H}$ the slow-roll parameter $epsilon(phi)$ is increasing, we thus require that $epsilon(phi)$ develops a maximum for $phi > phi_{H}$ after which $epsilon(phi)$ decrease to small values where most $e$-folds are produced. The end of inflation might occur trough a hybrid mechanism and a small field excursion $Deltaphi_eequiv |phi_H-phi_e |$ is obtained with a sufficiently thin profile for $epsilon(phi)$ which, however, should not conflict with the second slow-roll parameter $eta(phi)$. As a consequence of this analysis we find bounds for $Delta phi_e$, $r_H$ and for the scalar spectral index $n_{sH}$. Finally we provide examples where these considerations are explicitly realised.

تحميل البحث