Why Non-equilibrium is Different


الملخص بالإنكليزية

The 1970 paper, Decay of the Velocity Correlation Function [Phys. Rev. A1, 18 (1970), see also Phys. Rev. Lett. 18, 988 (1967)] by Berni Alder and Tom Wainwright, demonstrated, by means of computer simulations, that the velocity autocorrelation function for a particle in a gas of hard disks decays algebraically in time as $t^{-1},$ and as $t^{-3/2}$ for a gas of hard spheres. These decays appear in non-equilibrium fluids and have no counterpart in fluids in thermodynamic equilibrium. The work of Alder and Wainwright stimulated theorists to find explanations for these long time tails using kinetic theory or a mesoscopic mode-coupling theory. This paper has had a profound influence on our understanding of the non-equilibrium properties of fluid systems. Here we discuss the kinetic origins of the long time tails, the microscopic foundations of mode-coupling theory, and the implications of these results for the physics of fluids. We also mention applications of the long time tails and mode-coupling theory to other, seemingly unrelated, fields of physics. We are honored to dedicate this short review to Berni Alder on the occasion of his 90th birthday!

تحميل البحث