We present the quantitative phase diagram of the bilayer bosonic fractional quantum Hall system on the torus geometry at total filling factor $ u=1$ in the lowest Landau level. We consider short-range interactions within and between the two layers, as well as the inter-layer tunneling. In the fully polarized regime, we provide an updated detailed numerical analysis to establish the presence of the Moore-Read phase of both even and odd numbers of particles. In the actual bilayer situation, we find that both inter-layer interactions and tunneling can provide the physical mechanism necessary for the low-energy physics to be driven by the fully polarized regime, thus leading to the emergence of the Moore-Read phase. Inter-layer interactions favor a ferromagnetic phase when the system is $SU(2)$ symmetric, while the inter-layer tunneling acts as a Zeeman field polarizing the system. Besides the Moore-Read phase, the $(220)$ Halperin state and the coupled Moore-Read state are also realized in this model. We study their stability against each other.