The PEP Survey: evidence for intense star-forming activity in the majority of radio-selected AGN at z>~1


الملخص بالإنكليزية

In order to investigate the FIR properties of radio-active AGN, we have considered three different fields where both radio and FIR observations are the deepest to-date: GOODS-South, GOODS-North and the Lockman Hole. Out of a total of 92 radio-selected AGN, ~64% are found to have a counterpart in Herschel maps. The percentage is maximum in the GOODS-North (72%) and minimum (~50%) in the Lockman Hole, where FIR observations are shallower. Our study shows that in all cases FIR emission is associated to star-forming activity within the host galaxy. Such an activity can even be extremely intense, with star-forming rates as high as ~10^3-10^4 Msun/yr. AGN activity does not inhibit star formation in the host galaxy, just as on-site star-formation does not seem to affect AGN properties, at least those detected at radio wavelengths and for z>~1. Furthermore, physical properties such as the mass and age distributions of the galaxies hosting a radio-active AGN do not seem to be affected by the presence of an ongoing star-forming event. Given the very high rate of FIR detections, we stress that this refers to the majority of the sample: most radio-active AGN are associated with intense episodes of star-formation. However, the two processes proceed independently within the same galaxy, at all redshifts but in the local universe, where powerful enough radio activity reaches the necessary strength to switch off the on-site star formation. Our data also show that for z>~1 the hosts of radio-selected star-forming galaxies and AGN are indistinguishable from each other both in terms of mass and IR luminosity distributions. The two populations only differentiate in the very local universe, whereby the few AGN which are still FIR-active are found in galaxies with much higher masses and luminosities.

تحميل البحث