Let $p(n)$ denote the partition function. Desalvo and Pak proved the log-concavity of $p(n)$ for $n>25$ and the inequality $frac{p(n-1)}{p(n)}left(1+frac{1}{n}right)>frac{p(n)}{p(n+1)}$ for $n>1$. Let $r(n)=sqrt[n]{p(n)/n}$ and $Delta$ be the difference operator respect to $n$. Desalvo and Pak pointed out that their approach to proving the log-concavity of $p(n)$ may be employed to prove a conjecture of Sun on the log-convexity of ${r(n)}_{ngeq 61}$, as long as one finds an appropriate estimate of $Delta^2 log r(n-1)$. In this paper, we obtain a lower bound for $Delta^2log r(n-1)$, leading to a proof of this conjecture. From the log-convexity of ${r(n)}_{ngeq61}$ and ${sqrt[n]{n}}_{ngeq4}$, we are led to a proof of another conjecture of Sun on the log-convexity of ${sqrt[n]{p(n)}}_{ngeq27}$. Furthermore, we show that $limlimits_{n rightarrow +infty}n^{frac{5}{2}}Delta^2logsqrt[n]{p(n)}=3pi/sqrt{24}$. Finally, by finding an upper bound of $Delta^2 logsqrt[n-1]{p(n-1)}$, we prove an inequality on the ratio $frac{sqrt[n-1]{p(n-1)}}{sqrt[n]{p(n)}}$ analogous to the above inequality on the ratio $frac{p(n-1)}{p(n)}$.