Next order energy asymptotics for Riesz potentials on flat tori


الملخص بالإنكليزية

Let $Lambda$ be a lattice in ${bf R}^d$ with positive co-volume. Among $Lambda$-periodic $N$-point configurations, we consider the minimal renormalized Riesz $s$-energy $mathcal{E}_{s,Lambda}(N)$. While the dominant term in the asymptotic expansion of $mathcal{E}_{s,Lambda}(N)$ as $N$ goes to infinity in the long range case that $0<s<d$ (or $s=log$) can be obtained from classical potential theory, the next order term(s) require a different approach. Here we derive the form of the next order term or terms, namely for $s>0$ they are of the form $C_{s,d}|Lambda|^{-s/d}N^{1+s/d}$ and $-frac{2}{d}Nlog N+left(C_{log,d}-2zeta_{Lambda}(0)right)N$ where we show that the constant $C_{s,d}$ is independent of the lattice $Lambda$.

تحميل البحث