Indirect switching of vortex polarity through magnetic dynamic coupling


الملخص بالإنكليزية

Magnetic vortex cores exhibit a gyrotropic motion, and may reach a critical velocity, at which point they invert their z-component of the magnetization. We performed micromagnetic simulations to describe this vortex core polarity reversal in magnetic nanodisks presenting a perpendicular anisotropy. We found that the critical velocity decreases with increasing perpendicular anisotropy, therefore departing from a universal criterion, that relates this velocity only to the exchange stiffness of the material. This leads to a critical velocity inversely proportional to the vortex core radius. We have also shown that in a pair of interacting disks, it is possible to switch the core vortex polarity through a non-local excitation; exciting one disk by applying a rotating magnetic field, one is able to switch the polarity of a neighbor disk, with a larger perpendicular anisotropy.

تحميل البحث