We construct open book structures on all moment-angle manifolds and describe the topology of their leaves and bindings under certain restrictions. II. We also show, using a recent deep result about contact forms due to Borman, Eliashberg and Murphy [6], that every odd-dimensional moment-angle manifold admits a contact structure. This contrasts with the fact that, except for a few, well-determined cases, even-dimensional ones do not admit symplectic structures. We obtain the same results for large families of more general intersections of quadrics.