Expanding on techniques of concentration of measure, we develop a quantitative framework for modeling liquidity risk using convex risk measures. The fundamental objects of study are curves of the form $(rho(lambda X))_{lambda ge 0}$, where $rho$ is a convex risk measure and $X$ a random variable, and we call such a curve a emph{liquidity risk profile}. The shape of a liquidity risk profile is intimately linked with the tail behavior of the underlying $X$ for some notable classes of risk measures, namely shortfall risk measures. We exploit this link to systematically bound liquidity risk profiles from above by other real functions $gamma$, deriving tractable necessary and sufficient conditions for emph{concentration inequalities} of the form $rho(lambda X) le gamma(lambda)$, for all $lambda ge 0$. These concentration inequalities admit useful dual representations related to transport inequalities, and this leads to efficient uniform bounds for liquidity risk profiles for large classes of $X$. On the other hand, some modest new mathematical results emerge from this analysis, including a new characterization of some classical transport-entropy inequalities. Lastly, the analysis is deepened by means of a surprising connection between time consistency properties of law invariant risk measures and the tensorization of concentration inequalities.