Large classes of permutation polynomials over $mathbb{F}_{q^2}$


الملخص بالإنكليزية

Permutation polynomials (PPs) of the form $(x^{q} -x + c)^{frac{q^2 -1}{3}+1} +x$ over $mathbb{F}_{q^2}$ were presented by Li, Helleseth and Tang [Finite Fields Appl. 22 (2013) 16--23]. More recently, we have constructed PPs of the form $(x^{q} +bx + c)^{frac{q^2 -1}{d}+1} -bx$ over $mathbb{F}_{q^2}$, where $d=2, 3, 4, 6$ [Finite Fields Appl. 35 (2015) 215--230]. In this paper we concentrate our efforts on the PPs of more general form [ f(x)=(ax^{q} +bx +c)^r phi((ax^{q} +bx +c)^{(q^2 -1)/d}) +ux^{q} +vx~~text{over $mathbb{F}_{q^2}$}, ] where $a,b,c,u,v in mathbb{F}_{q^2}$, $r in mathbb{Z}^{+}$, $phi(x)in mathbb{F}_{q^2}[x]$ and $d$ is an arbitrary positive divisor of $q^2-1$. The key step is the construction of a commutative diagram with specific properties, which is the basis of the Akbary--Ghioca--Wang (AGW) criterion. By employing the AGW criterion two times, we reduce the problem of determining whether $f(x)$ permutes $mathbb{F}_{q^2}$ to that of verifying whether two more polynomials permute two subsets of $mathbb{F}_{q^2}$. As a consequence, we find a series of simple conditions for $f(x)$ to be a PP of $mathbb{F}_{q^2}$. These results unify and generalize some known classes of PPs.

تحميل البحث