Evolution of Wilson Loop in Time-Dependent N=4 Super Yang-Mills Plasma


الملخص بالإنكليزية

Using holography we have studied the time-dependent potential of a quark-antiquark pair in a dynamical strongly coupled plasma. The time-dependent plasma, whose dynamics is originated from the energy injection, is dual to AdS-Vaidya background. The quark-antiquark pair is represented by the endpoints of a string stretched from the boundary to the bulk. The evolution of the system is studied by evaluating the potential between quark and anti-quark, extracted from the expectation value of the Wilson loop, throughout the process. Our results show that the time-dependent potential depends on the speed of injecting energy as well as the final temperature of the plasma. For high enough temperatures and rapid energy injection, the potential starts oscillating around its equilibrium value, immediately after the injection.

تحميل البحث