Functional central limit theorems for single-stage samplings designs


الملخص بالإنكليزية

For a joint model-based and design-based inference, we establish functional central limit theorems for the Horvitz-Thompson empirical process and the Hajek empirical process centered by their finite population mean as well as by their super-population mean in a survey sampling framework. The results apply to single-stage unequal probability sampling designs and essentially only require conditions on higher order correlations. We apply our main results to a Hadamard differentiable statistical functional and illustrate its limit behavior by means of a computer simulation.

تحميل البحث