Several results from numerical investigation of nonlinear waves connected to blood flow in an elastic tube of variable radius


الملخص بالإنكليزية

We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.

تحميل البحث