Quantum nondemolition measurement of a nonclassical state of a massive object


الملخص بالإنكليزية

While quantum mechanics exquisitely describes the behavior of microscopic systems, one ongoing challenge is to explore its applicability to systems of larger size and mass. Unfortunately, quantum states of increasingly macroscopic objects are more easily corrupted by unintentional measurements from the classical environment. Additionally, even the intentional measurements from the observer can further perturb the system. In optomechanics, coherent light fields serve as the intermediary between the fragile mechanical states and our inherently classical world by exerting radiation pressure forces and extracting mechanical information. Here we engineer a microwave cavity optomechanical system to stabilize a nonclassical steady-state of motion while independently, continuously, and nondestructively monitoring it. By coupling the motion of an aluminum membrane to two microwave cavities, we separately prepare and measure a squeezed state of motion. We demonstrate a quantum nondemolition (QND) measurement of sub-vacuum mechanical quadrature fluctuations. The techniques developed here have direct applications in the areas of quantum-enhanced sensing and quantum information processing, and could be further extended to more complex quantum states.

تحميل البحث