Quantum superposition is central to quantum theory but challenges our concepts of reality and spacetime when applied to macroscopic objects like Schrodingers cat. For that reason, it has been a long-standing question whether quantum physics remains valid unmodified even for truly macroscopic objects. By now, the predictions of quantum theory have been confirmed via matter-wave interferometry for massive objects up to $10^4,$ atomic mass units (amu). The rapid development of new technologies promises to soon allow tests of quantum theory for significantly higher test masses by using novel techniques of quantum optomechanics and high-mass matter-wave interferometry. Such experiments may yield novel insights into the foundations of quantum theory, pose stringent limits on alternative theoretical models or even uncover deviations from quantum physics. However, performing experiments of this type on Earth may soon face principal limitations due to requirements of long times of flight, ultra-low vibrations, and extremely high vacuum. Here, we present a short overview of recent developments towards the implementation of the proposed space-mission MAQRO, which promises to overcome those limitations and to perform matter-wave interferometry in a parameter regime orders of magnitude beyond state-of-the-art.