Correlation in Hard Distributions in Communication Complexity


الملخص بالإنكليزية

We study the effect that the amount of correlation in a bipartite distribution has on the communication complexity of a problem under that distribution. We introduce a new family of complexity measures that interpolates between the two previously studied extreme cases: the (standard) randomised communication complexity and the case of distributional complexity under product distributions. We give a tight characterisation of the randomised complexity of Disjointness under distributions with mutual information $k$, showing that it is $Theta(sqrt{n(k+1)})$ for all $0leq kleq n$. This smoothly interpolates between the lower bounds of Babai, Frankl and Simon for the product distribution case ($k=0$), and the bound of Razborov for the randomised case. The upper bounds improve and generalise what was known for product distributions, and imply that any tight bound for Disjointness needs $Omega(n)$ bits of mutual information in the corresponding distribution. We study the same question in the distributional quantum setting, and show a lower bound of $Omega((n(k+1))^{1/4})$, and an upper bound, matching up to a logarithmic factor. We show that there are total Boolean functions $f_d$ on $2n$ inputs that have distributional communication complexity $O(log n)$ under all distributions of information up to $o(n)$, while the (interactive) distributional complexity maximised over all distributions is $Theta(log d)$ for $6nleq dleq 2^{n/100}$. We show that in the setting of one-way communication under product distributions, the dependence of communication cost on the allowed error $epsilon$ is multiplicative in $log(1/epsilon)$ -- the previous upper bounds had the dependence of more than $1/epsilon$.

تحميل البحث