The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. In late 2012, we have organized the first contemporaneous multi-wavelength campaign including radio, optical, X-ray and gamma-ray instruments. During this campaign an exceptionally bright flare of IC 310 was detected with the MAGIC telescopes in November 2012 reaching an averaged flux level in the night of up to one Crab above 1 TeV with a hard spectrum over two decades in energy. The intra-night light curve showed a series of strong outbursts with flux-doubling time scales as fast as a few minutes. The fast variability constrains the size of the gamma-ray emission regime to be smaller than 20% of the gravitational radius of its central black hole. This challenges the shock acceleration models, commonly used to explain gamma-ray radiation from active galaxies. Here, we will present more details on the MAGIC data and discuss several possible alternative emission models.