We study meromorphic extensions of distance and tube zeta functions, as well as of geometric zeta functions of fractal strings. The distance zeta function $zeta_A(s):=int_{A_delta} d(x,A)^{s-N}mathrm{d}x$, where $delta>0$ is fixed and $d(x,A)$ denotes the Euclidean distance from $x$ to $A$ extends the definition of the zeta function associated with bounded fractal strings to arbitrary bounded subsets $A$ of $mathbb{R}^N$. The abscissa of Lebesgue convergence $D(zeta_A)$ coincides with $D:=overlinedim_BA$, the upper box dimension of $A$. The complex dimensions of $A$ are the poles of the meromorphic continuation of the fractal zeta function of $A$ to a suitable connected neighborhood of the critical line ${Re(s)=D}$. We establish several meromorphic extension results, assuming some suitable information about the second term of the asymptotic expansion of the tube function $|A_t|$ as $tto0^+$, where $A_t$ is the Euclidean $t$-neighborhood of $A$. We pay particular attention to a class of Minkowski measurable sets, such that $|A_t|=t^{N-D}(mathcal M+O(t^gamma))$ as $tto0^+$, with $gamma>0$, and to a class of Minkowski nonmeasurable sets, such that $|A_t|=t^{N-D}(G(log t^{-1})+O(t^gamma))$ as $tto0^+$, where $G$ is a nonconstant periodic function and $gamma>0$. In both cases, we show that $zeta_A$ can be meromorphically extended (at least) to the open right half-plane ${Re(s)>D-gamma}$. Furthermore, up to a multiplicative constant, the residue of $zeta_A$ evaluated at $s=D$ is shown to be equal to $mathcal M$ (the Minkowski content of $A$) and to the mean value of $G$ (the average Minkowski content of $A$), respectively. Moreover, we construct a class of fractal strings with principal complex dimensions of any prescribed order, as well as with an infinite number of essential singularities on the critical line ${Re(s)=D}$.