Audio-band frequency-dependent squeezing


الملخص بالإنكليزية

Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometers readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuums squeezed quadrature must rotate by 90 degrees around 50Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency, heralding application of the technique in future gravitational-wave detectors.

تحميل البحث