In this paper we introduce a model describing diffusion of species by a suitable regularization of a forward-backward parabolic equation. In particular, we prove existence and uniqueness of solutions, as well as continuous dependence on data, for a system of partial differential equations and inclusion, which may be interpreted, e.g., as evolving equation for physical quantities such as concentration and chemical potential. The model deals with a constant mobility and it is recovered from a possibly non-convex free-energy density. In particular, we render a general viscous regularization via a maximal monotone graph acting on the time derivative of the concentration and presenting a strong coerciveness property.