The results obtained using the temperature monitoring systems of the 6-m BTA telescope primary mirror, dome space, and external environment are reported. We consider the factors that affect the development of microturbulence in the near-mirror air layer and inside the dome space, variation of the telescope focal length with the temperature of its structures, variation of seeing due to temperature gradients inside the primary mirror of the 6-m telescope. The methods used in various observatories for reducing microturbulence are analyzed. We formulate suggestions concerning the improvement of the temperature monitoring system currently in operation and the system of automatic adjustment of the telescope focal length to compensate the thermal drift of the focus during observations.