$^{24}$Mg($p$, $alpha$)$^{21}$Na reaction study for spectroscopy of $^{21}$Na


الملخص بالإنكليزية

The $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in $^{21}$Na for the astrophysically important $^{17}$F($alpha, p$)$^{20}$Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched $^{24}$Mg solid targets were used. Recoiling $^{4}$He particles from the $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction were detected by a highly segmented silicon detector array which measured the yields of $^{4}$He particles over a range of angles simultaneously. A new level at 6661 $pm$ 5 keV was observed in the present work. The extracted angular distributions for the first four levels of $^{21}$Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.

تحميل البحث