Continuous-variable quantum process tomography with squeezed-state probes


الملخص بالإنكليزية

We propose a procedure for tomographic characterization of continuous variable quantum operations which employs homodyne detection and single-mode squeezed probe states with a fixed degree of squeezing and anti-squeezing and a variable displacement and orientation of squeezing ellipse. Density matrix elements of a quantum process matrix in Fock basis can be estimated by averaging well behaved pattern functions over the homodyne data. We show that this approach can be straightforwardly extended to characterization of quantum measurement devices. The probe states can be mixed, which makes the proposed procedure feasible with current technology.

تحميل البحث