We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi2O3, Al2O3, HfO2, MgO or AgOx by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag and Hf. Surprisingly the Bi2O3 capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi2O3 interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity and surface scatterings. The Ag/Bi2O3 interface may provide functionality as a spin to charge interconversion layer.