The energy dependence of the cross sections for electromagnetic diffractive processes can be well described by a single power, $W^delta$. For $J/psi$ photoproduction this holds in the range from 20 GeV to 2 TeV. This feature is most easily explained by a single pole in the angular momentum plane which depends on the scale of the process, at least in a certain range of values of the momentum transfer. It is shown that this assumption allows a unified description of all electromagnetic elastic diffractive processes. We also discuss an alternative model with an energy dependent dipole cross section, which is compatible with the data up to 2 TeV and which shows an energy behaviour typical for a cut in the angular momentum plane.