The Double-Peaked SN2013ge: a Type Ib/c SN with an Asymmetric Mass Ejection or an Extended Progenitor Envelope


الملخص بالإنكليزية

We present extensive observations of the Type Ib/c SN2013ge from -13 to +457 days, including spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN2013ge one of the best observed normal Type Ib/c SN at early times---when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements---and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of high velocity (~15,000 km/s) but narrow (~3500 km/s) features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion are standard for Type Ib/c SN, and there is evidence for weak He features at early times. In addition, SN2013ge exploded in a low metallicity environment and we have obtained some of the deepest radio and X-ray limits for a Type Ib/c SN to date, which constrain the progenitor mass-loss rate. We are left with two distinct progenitor scenarios for SN2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN2013ge either possessed a low-mass extended envelope or ejected a portion of its envelope in the final <1 year before core-collapse. Alternatively, if the first component is due to outwardly mixed Ni-56, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of a SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN2013ge. Finally, the spectra of the first component of SN2013ge are similar to those of the rapidly-declining SN2002bj.

تحميل البحث