CHANG-ES V: Nuclear Radio Outflow in a Virgo Cluster Spiral after a Tidal Disruption Event


الملخص بالإنكليزية

We have observed the Virgo Cluster spiral galaxy, NGC~4845, at 1.6 and 6 GHz using the Karl G. Jansky Very Large Array, as part of the `Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES). The source consists of a bright unresolved core with a surrounding weak central disk (1.8 kpc diameter). The core is variable over the 6 month time scale of the CHANG-ES data and has increased by a factor of $approx$ 6 since 1995. The wide bandwidths of CHANG-ES have allowed us to determine the spectral evolution of this core which peaks {it between} 1.6 and 6 GHz (it is a GigaHertz-peaked spectrum source).We show that the spectral turnover is dominated by synchrotron self-absorption and that the spectral evolution can be explained by adiabatic expansion (outflow), likely in the form of a jet or cone. The CHANG-ES observations serendipitously overlap in time with the hard X-ray light curve obtained by Nikolajuk & Walter (2013) which they interpret as due to a tidal disruption event (TDE) of a super-Jupiter mass object around a $10^5, M_odot$ black hole. We outline a standard jet model, provide an explanation for the observed circular polarization, and quantitatively suggest a link between the peak radio and peak X-ray emission via inverse Compton upscattering of the photons emitted by the relativistic electrons. We predict that it should be possible to resolve a young radio jet via VLBI as a result of this nearby TDE.

تحميل البحث