Computing Highly Oscillatory Integrals


الملخص بالإنكليزية

We develop two classes of composite moment-free numerical quadratures for computing highly oscillatory integrals having integrable singularities and stationary points. The first class of the quadrature rules has a polynomial order of convergence and the second class has an exponential order of convergence. We first modify the moment-free Filon-type method for the oscillatory integrals without a singularity or a stationary point to accelerate their convergence. We then consider the oscillatory integrals without a singularity or a stationary point and then those with singularities and stationary points. The composite quadrature rules are developed based on partitioning the integration domain according to the wave number and the singularity of the integrand. The integral defined on a subinterval has either a weak singularity without rapid oscillation or oscillation without a singularity. The classical quadrature rules for weakly singular integrals using graded points are employed for the singular integral without rapid oscillation and the modified moment-free Filon-type method is used for the oscillatory integrals without a singularity. Unlike the existing methods, the proposed methods do not have to compute the inverse of the oscillator. Numerical experiments are presented to demonstrate the approximation accuracy and the computational efficiency of the proposed methods. Numerical results show that the proposed methods outperform methods published most recently.

تحميل البحث