Billiards in convex bodies with acute angles


الملخص بالإنكليزية

In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body $Ksubset mathbb{R}^d$ has the property that the tangent cone of every non-smooth point $qin partial K$ is acute (in a certain sense) then there is a closed billiard trajectory in $K$.

تحميل البحث