Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics


الملخص بالإنكليزية

Lars Onsager and Richard Feynman envisioned that the three-dimensional (3D) superfluid-to-normal $lambda$ transition in $^{4}$He occurs through the proliferation of vortices. This process should hold for every phase transition in the same universality class. The role of topological defects in symmetry-breaking phase transitions has become a prime topic in cosmology and high-temperature superconductivity, even though direct imaging of these defects is challenging. Here we show that the U(1) continuous symmetry that emerges at the ferroelectric critical point of multiferroic hexagonal manganites leads to a similar proliferation of vortices. Moreover, the disorder field (vortices) is coupled to an emergent U(1) gauge field, which becomes massive by means of the Higgs mechanism when vortices condense (span the whole system) upon heating above the ferroelectric transition temperature. Direct imaging of the vortex network in hexagonal manganites offers unique experimental access to this dual description of the ferroelectric transition, while enabling tests of the Kibble-Zurek mechanism.

تحميل البحث